Intact glycosaminoglycans from intervertebral disc-derived notochordal cell-conditioned media inhibit neurite growth while maintaining neuronal cell viability.

نویسندگان

  • Devina Purmessur
  • Marisa C Cornejo
  • Samuel K Cho
  • Peter J Roughley
  • Robert J Linhardt
  • Andrew C Hecht
  • James C Iatridis
چکیده

BACKGROUND CONTEXT Painful human intervertebral discs (IVDs) exhibit nerve growth deep into the IVD. Current treatments for discogenic back pain do not address the underlying mechanisms propagating pain and are often highly invasive or only offer temporary symptom relief. The notochord produces factors during development that pattern the spine and inhibit the growth of dorsal root ganglion (DRG) axons into the IVD. We hypothesize that notochordal cell (NC)-conditioned medium (NCCM) includes soluble factors capable of inhibiting neurite growth and may represent a future therapeutic target. PURPOSE To test if NCCM can inhibit neurite growth and determine if NC-derived glycosaminoglycans (GAGs) are necessary candidates for this inhibition. STUDY DESIGN Human neuroblastoma (SH-SY5Y) cells and rat DRG cells were treated with NCCM in two-dimensional culture in vitro, and digestion and mechanistic studies determined if specific GAGs were responsible for inhibitory effects. METHODS Notochordal cell-conditioned medium was generated from porcine nucleus pulposus tissue that was cultured in Dulbecco's modified eagle's medium for 4 days. A dose study was performed using SH-SY5Y cells that were seeded in basal medium for 24 hours and neurite outgrowth and cell viability were assessed after treatment with basal media or NCCM (10% and 100%) for 48 hours. Glycosaminoglycans from NCCM were characterized using multiple digestions and liquid chromatography mass spectroscopy (LC-MS). Neurite growth was assessed on both SH-SY5Y and DRG cells after treatment with NCCM with and without GAG digestion. RESULTS Notochordal cell-conditioned medium significantly inhibited the neurite outgrowth from SH-SY5Y cells compared with basal controls without dose or cytotoxic effects; % of neurite expressing cells were 39.0±2.9%, 27.3±3.6%, and 30.2±2.7% and mean neurite length was 60.3±3.5, 50.8±2.4, 53.2±3.7 μm for basal, 10% NCCM, and 100% NCCM, respectively. Digestions and LC-MS determined that chondroitin-6-sulfate was the major GAG chain in NCCM. Neurite growth from SH-SY5Y and DRG cells was not inhibited when cells were treated with NCCM with digested chondroitin sulfate (CS). CONCLUSIONS Soluble factors derived from NCCM were capable of inhibiting neurite outgrowth in multiple neural cell types without any negative effects on cell viability. Cleavage of GAGs via digestion was necessary to reverse the neurite inhibition capacity of NCCM. We conclude that intact GAGs such as CS secreted from NCs are potential candidates that could be useful to reduce neurite growth in painful IVDs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notochordal cell rich nucleus pulposus tissue increases proteoglycan accumulation and promotes a healthy nucleus pulposus phenotype in human MSCs

pulposus phenotype in human MSCs +Purmessur, D; Godburn K; Abbott, RD: Schek RM; Iatridis JC +University of Vermont, Burlington VT Senior author [email protected] INTRODUCTION Mesenchymal stem cells (MSCs) are an attractive cell source for IVD repair, yet the means of differentiating these cells to a nucleus pulposus (NP) phenotype is not clear and an area of high priority. Notochordal cel...

متن کامل

Molecular Therapy for Degenerative Disc Disease: Clues from Secretome Analysis of the Notochordal Cell-Rich Nucleus Pulposus

Degenerative disc disease (DDD) is associated with spinal pain often leading to long-term disability. However, the non-chondrodystrophic canine intervertebral disc is protected from the development of DDD, ostensibly due to its retention of notochordal cells (NC) in the nucleus pulposus (NP). In this study, we hypothesized that secretome analysis of the NC-rich NP will lead to the identificatio...

متن کامل

Activation of intervertebral disc cells by co-culture with notochordal cells, conditioned medium and hypoxia

BACKGROUND Notochordal cells (NC) remain in the focus of research for regenerative therapy for the degenerated intervertebral disc (IVD) due to their progenitor status. Recent findings suggested their regenerative action on more mature disc cells, presumably by the secretion of specific factors, which has been described as notochordal cell conditioned medium (NCCM). The aim of this study was to...

متن کامل

Notochordal conditioned media from tissue increases proteoglycan accumulation and promotes a healthy nucleus pulposus phenotype in human mesenchymal stem cells

INTRODUCTION Notochordal cells (NCs) are influential in development of the intervertebral disc (IVD) and species that retain NCs do not degenerate. IVD repair using bone marrow derived mesenchymal stem cells (MSCs) is an attractive approach and the harsh microenvironment of the IVD suggests pre-differentiation is a necessary first step. The goal of this study was to use soluble factors from NCs...

متن کامل

Conditioned medium differentially regulates matrix protein gene expression in cells of the intervertebral disc.

STUDY DESIGN Matrix protein gene expression was determined for cells of the anulus fibrosus (AF) and nucleus pulposus (NP) regions of the intervertebral disc when cultured in AF or NP cell-conditioned medium. OBJECTIVES To investigate changes in mRNA levels for type I collagen, type II collagen and aggrecan in cells of the AF and NP in response to cell-conditioned medium. SUMMARY OF BACKGRO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The spine journal : official journal of the North American Spine Society

دوره 15 5  شماره 

صفحات  -

تاریخ انتشار 2015